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LONG-TERM GOALS  
 
One research goal developed from conducted shallow water (SW) acoustic transmission experiments in 
sandy-silty areas [1] revealed a nonlinear power law frequency-dependent attenuation at lower 
frequencies ( ≤ 1 kHz ) consistent with results reviewed in [2-4] and the observations by the ONR-HEP 
program. The Biot Theory [5] predicts that the sandy- sediment frequency-dependent attenuation 
should be quadratic,  withn

oo )f/f)(f()f( αα = 2=n ; however the observed dependence was 
. Thus the long-range goal was to develop a simplified theory of sediment attenuation [6] 

verified by measurements that could explain this dependence and be applied to ocean sediments. 
0.21.8  n ±=

 
The second research goal is the development of a quantitative understanding and a theoretical 
treatment of the scattering of sound by non spherical compressible objects such as bubbles. 
 
OBJECTIVE  
 
The objective of the work, discussed in this annual report, was to determine the frequency dependent 
attenuation and phase speed characteristics of selected sandy and muddy sediments (both water 
saturated and partially saturated) at the lower frequencies to verify a simplified Biot theory] and to 
provide a theoretical / experimental basis for the water-sediment boundary condition necessary for the 
accurate prediction of wide band transmission loss in shallow waters. 
 
APPROACH  
 
This work was aimed at enhancing our understanding of saturated and partially saturated sandy 
sediment for frequencies ranging from 100 Hz to 10 kHz.  The basic hypothesis is based on the 
simplified Biot sediment theory [6] and the prediction that high permeability sands will have a 
quadratic frequency dependent attenuation, and that these measure-ments can be described by a Biot 
time constant. Previously, the Nantucket Sound Experiment, have been [7, 8] we compared this theory 
to experimental results from an experiment with known environmental (isospeed) conditions, 
geophysical properties, surface roughness and water depth. While the theory predicts a power-law 
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dependence with an exponent of ; results from this experiment agreed with other experiments 
conducted under similar conditions yielded an exponent on average of approximately 

2=n

 
α( f ) =α( fo) ⋅ ( f / fo)n ; with 0.261≤α(1 kHz) ≤ 0.273 and n =1.87−0.21

+0.17. 
 
This compares with a summary by Zhou [2] drawn from a larger and less restrictive group of 
experimental results yielded α( fo) = 0.34; n =1.84  where the reference frequency is not specified. The 
attenuation constant )f( oα  is consistent with the measurements of Hamilton [9] at 1 kHz. 
 
For long-range propagation when shear is not important, as is the case for sandy silty sediments, the 
modal representation of the pressure field is 
 

p(r) ≈ ann=1

M∑ φn (z)φn (zo)Ho
1[(kn + iβn )r], 

 
where φn , , and kn βn  are the eigenfunction, the eigenvalue (or modal wavenumber), and modal 
attenuation coefficient of the  propagating mode. A perturbation solution for the modal coefficients 
that was originally developed by Kornhauser and Raney [10] and revisited by Pierce yields the modal 
attenuation coefficient as 

nth

 

βn (ω) = vph,n{ (α(ω)∫ /ρc)φn
2dz / (φn

2 /ρ)∫ dz}. 
 
This expression shows that the modal attenuation is related to the intrinsic attenuation of the bottom by 
an integral over depth. Depth dependent profiles should be important in correctly determining the 
frequency dependence of attenuation. A comparison of the measured pressure field using the 
autonomous-vehicle hydrophone-array system with the pressure field calculated using a normal mode 
propagation code, such as Kraken [11], or with a poroelastic-parabolic-equation code, Ram, [ 12,13 ] 
with a depth dependent profiles and frequency dependent attenuation should explain this less than 
quadratic dependence. 
 
Calculation with realistic near water sediment gradients in porosity, sound speed and attenuation were 
found to be inconsistent with these experimental results between 100 Hz and 1 kHz. The conclusion 
was that geoacoustic gradients could not explain the effect and since the surface roughness was 
negligent ( m.010≈σ ) the leakage of sound from the channel by shear and interface waves were 
considered. The problem immediately faced is our lack of knowledge of the shear speed in the sandy-
silty sediments. A review of experimental measurements revealed that the shear wave speed for sandy 
sediments with porosities in the 40-60% range should be less than 500 m/s.  
 
Calculations with parabolic equation and fast field codes were performed to produce simulated 
pressure versus range data that when analyzed in the same manner as the experiments showed that low 
sediment shear wave speed could be important. The results of a calculation performed with a fluid 
bottom with  and  are shown in Fig. 1. The difference in the effective attenuation constant 
is seen to be largest at the lower frequencies. The 

2=n 81.n =
2=n  (the blue curve) results in an underestimate of 

this factor while the  result shows more attenuation at the lower frequencies. However when 
 is used with a shear wave speed of 300m/s the results are comparable with  result. 

81.n =
2=n 81.n =

2 



 
 

Fig. 1, A comparison of the calculated frequency dependence of the 
 EAC for a liquid and poroelastic sediment with a shear speed of 300m/s. 

 
 
The question posed by these result is the value of the shear wave speed in the Nantucket Sound 
Experiment and is it low enough to explain the 81.n = result? 
 
WORK COMPLETED  
 
The second Nantucket Sound Experiment used the autonomous-vehicle hydrophone-array system at a 
constant depth radially out from a source deployed on the water sediment interface from a small ship. 
Sensors on board the ship included a global positioning system, acoustic Doppler current profiler, a 
precision depth sounder, and a conductivity temperature-depth profiler. Source depth was determined 
by a depth sensor attached to the source and the source level was monitored with a reference 
hydrophone 1m from the source. A signal generator was used to generate signals composed of multiple 
narrow-band tones and the U.S. Navy calibrated source was driven with a Macintosh power amplifier. 
 
The geometry for the experiment was a straight line tow past the source with the array just above the 
bottom. The six hydrophone outputs were recorded along with position information and vehicle speed. 
The results were narrow band filtered and range indexed. The complex pressure, ),r(P ω , was then 
synthetically processed using a Hankle Transform to determine the horizontal wave number 
spectrum, . •⋅ ),k(P),k(P ωω
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Fig. 2 The horizontal wave number spectrum at a frequency of 275 Hz , 0.38 s time sample, 
 a Hann window on the Fourier Transfom and a 50% over lap. This result is from a 

 linear average of horizontal wavenumber spectra from six  hydrophones. 
 
 
Figure 2 shows preliminary results from this experiment. The rlative amplitude peaks of the Sholte 
wave to Compressional wave is approximately 100. The Sholte wave peak at a wavenumber of 6.95 
yields a shear wave spee of  284 m/s. This result is an unusual measurement of the sediment shear 
wave speed and is consistent with our expectation of the importance of waveguide energy removal by 
conversion to shear. 
 
RESULTS  
 
A rapid, accurate and cost effective waveguide characterization tool, a prototype autonomous-vehicle 
towed-hydrophone-array system, was used to perform two shallow water experiments. The attenuation 
result from the Nantucket Sound I experiment was found to have frequency dependence 871.n = .  
Agreement between measured and calculated transmission loss was obtained when this non-linear 
frequency dependent attenuation with a magnitude consistent with Hamilton’s results were used. 
However the difference between could not be explained. Numerical calculations and 
experiments showed that the incorporation of shear yielded results consistent with the measured 

 value. That is leakage of energy into shear wave propagation could explain the measured 
nonlinear frequency dependence since the apparent attenuation of compression waves in the water 
would be determine by two effects, the intrinsic attenuation in the sediment and the conversion of 
compressional waves to shear waves.  

281 and.n =

81.n =

 
An analytical treatment of a two layer waveguide, one layer being elastic sediment and the other water, 
showed that the modal attenuation, the removal of energy from the propagating modes, was composed 
of two terms-intrinsic attenuation and conversion to shear waves. This conversion at the lower 
frequencies was dependent on the shear wave speed to the third power, , and that the interface, 
Sholte,  wave would have a speed approximately

3
sc

ssch c.c 90≈ .  To determine the Nantucket Sound II sc
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experiment was conducted with this same system , the source of sound on the bottom and the array 
towed just above the bottom. The measured horizontal-wave-number spectrum was found to have 
peaks due to compressional wave propagation in the water and an interface wave, Sholte Wave 
corresponding to a shear wave speed of .s/mcs 280≈ . 
 
IMPACT/APPLICATIONS  
 
The measurement system described above was capable of characterizing a 4 km course in less than 1 
hour while previous techniques required up to 8 hours. Additionally, the experiments were performed 
from a single small ship with no moored assets.  The autonomous-vehicle towed-array system is an 
accurate, cost-effective, and efficient ocean acoustics measurement and surveillance tool and will have 
an impact on ocean acoustic experiments. The additional attribute of shear speed measurement in the 
hundreds of Hertz range is significant. 
 
RELATED PROJECTS  
 
The results of this research have the potential for dramatically improving the use of geo-acoustic 
models to accurately predict the propagation and dispersion of sound at the low frequencies (~100 Hz) 
to the high frequencies (~10 kHz). This work initiated the post doctoral appointment of Jon Collis and 
is now closely coordinated with his current ONR post doctoral grant. This effort is related to ONR-OA 
investigations at the Woods Hole Oceanographic Institution and the Rensselaer Polytechnic Institute 
and results in sharing resources and students. 
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